
Notation and summary

We will consider heterotic/F-theory duals; here we establish the relevant notation once and
for all. It is a combination of notation from Friedman, Morgan, and Witten, and from
Hayashi et al.

Heterotic side

The ingredients on the heterotic side which give a single SU(n) bundle:

• A Calabi–Yau N -fold Z, elliptically-fibred over S, with projection πZ : Z → S, and
section σ : S → Z.

• The spectral cover C, which is an n-fold branched cover of S, πC : C → S. Considered
as a sub-variety of Z, C intersects the section σ along a divisor nKS + η.

• The spectral line bundle NV on C.

• An auxiliary object is the fibre product C×SZ, with projections pC and pZ to the two
factors.

• The gauge bundle V is constructed from C and NV via Fourier-Mukai transform. In
particular, if P is the Poincaré line bundle on Z×Z, then V is given by

V = p2∗(p
∗
1NV⊗P) .

F-theory side

On the F-theory side we have the following:

• A Calabi–Yau (N + 1)-fold X, elliptically-fibred over an N -fold B.

• In turn, B is a P1 fibration over S; in fact, B = P
(
OS⊕OS(6KS + η)

)
, where η is the

same class used to construct the spectral cover above. If we take into account both E8

factors on the heterotic side, which correspond to the poles of the P1 fibre, we find the
relation η0 + η1 = −12KS. This makes the construction consistent, since

P
(
OS⊕OS(6KS + η0)

) ∼= P
(
OS⊕OS(−6KS − η1)

) ∼= P
(
OS⊕OS(6KS + η1)

)
.
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The basic duality between the heterotic string and F-theory states that the heterotic
string compactified on a torus is equivalent to F-theory compactified on an elliptic K3
surface, which can be interpreted as type IIB string theory compactified on P1 with a varying
axio-dilaton. This basic duality can then be applied fibrewise to obtain dualities between
the theories compactified to lower dimensions. These notes are intended to flesh out this
idea, largely following the paper by Friedman, Morgan, and Witten.

1 Elliptically-fibred Calabi–Yau manifolds

Since elliptically-fibred Calabi–Yau manifolds appear on both sides of the F-theory/heterotic
duality, we will begin by explaining how they are constructed.

Let π : X → B be an elliptic fibration, where X is a Calabi–Yau manifold. The term
elliptic fibration means that there exists at least one section σ : B ↪→ X, and for each b ∈ B,
we take σ(b) to be the zero of the group law on π−1(b).

The existence of a section means that a minimal model of X can be described by a
Weierstrass model,

Y 2Z = X3 + fXZ2 + gZ3 , (1)

where the parameters can vary over the base B. The section is given by Z = 0 (the above
equation then implies X = 0). We can now ask under what circumstances such a model does
in fact describe a Calabi–Yau. Without loss of generality, we can assume that X, Y, Z are
the homogeneous coordinates on a P2 bundle of the form P = P

(
OB(2D)⊕OB(3D)⊕OB

)
for some divisor D (an overall twist makes no difference, so Z can be made a section of
OB, then note that X3 and Y 2 must be sections of the same bundle for the equation to be
well-defined). If we denote by H the divisor class which corresponds to the hyperplane class
on each fibre, we see that the Weierstrass equation is a section of OP (3H+6π∗D). Therefore
for (1) to define a Calabi–Yau, we require

−KP ∼ 3H + 6 π∗D (2)

To find an expression for −KP = c1(P ), consider first the Euler sequence on P2:

0 −→ OP2 −→ OP2(1)⊕3 −→ TP2 −→ 0 .

The three summands of the middle term correspond to the homogeneous coordinates (X, Y, Z).
Therefore, if we let TF be the sub-bundle of TP which corresponds to vectors pointing along
the fibres, we can fibre this sequence over B to obtain

0 −→ OP −→ OP (2 π∗D +H)⊕OP (3 π∗D +H)⊕OP (H) −→ TF −→ 0 .

We also have the short exact sequence

0 −→ TF −→ TP −→ π∗TB −→ 0 ,

and if we put these together (and use −K ∼ c1) we find

−KP ∼ 3H + π∗(−KB + 5 π∗D) .

Comparing to (2), we see that our Weierstrass model describes a Calabi–Yau if we choose
D ∼ −KB. The parameters f and g are therefore sections of ω−4B and ω−6B respectively.

Note that B is embedded inside X by
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1.1 In weighted bundles

We can alternatively form the projective bundle with non-trivial weights, i.e., take P =
WP1,2,3

(
OB⊕OB(2D)⊕OB(3D)

)
. With corresponding homogeneous coordinates (V,X, Y ),

the Weierstrass equation takes the same form:

Y 2 = X3 + fXV 2 + gV 6 .

Using the same argument as above, we again find that the Calabi–Yau condition implies
D ∼ −KB.

2 The eight-dimensional duality

We start by outlining the equivalence between the heterotic string compactified on a torus,
and F-theory compactified on a K3 surface.

2.1 Flat SU(n) bundles on a torus — explicit construction

When the heterotic string is compactified on a torus, T-duality means that there is no
general way to distinguish geometric parameters from bundle parameters. However, if we fix
the Kähler modulus of the torus to be very large, and choose a fixed complex structure, we
can isolate a “bundle moduli space”. The equations of motion simply say that the bundle
must be flat.

We will focus on one E8 of the E8×E8 heterotic string, and on gauge bundles with
structure group SU(n). A flat bundle on an elliptic curve E is just a sum of degree-zero line
bundles, so we must understand these.

Let p0 be the zero of the group law on E . Then any degree-zero line bundle is of the form
O(P )⊗O(p0)

−1 for some point P ∈ E ; we will denote this bundle by L(P ). Let φ : E ↪→ P2

be the embedding given by the linear system |3p0|. Then by the definition of the group
law, P + Q + R = 0 if and only if O(P )⊗O(Q)⊗O(R) ∼= φ∗O(1) ∼= O(p0)

3. Therefore
L(P )⊗L(Q)⊗L(R) ∼= O if and only if P +Q+R = 0.

So a flat SU(n) bundle on E is of the form
⊕n

i=1 L(Qi), where
∑n

i=1Qi = 0 in the group
law on E . The isomorphism

⊗n
i=1 L(Qi) ∼= O is equivalent to the statement that the divisor

(n p0−
∑n

i=1Qi) is principal; there is a unique meromorphic function on E with simple zeros
at the Qi and an nth order pole at p0. We will give an explicit description of such functions.

Let E be given by the Weierstrass equation

Y 2Z = X3 + fXZ2 + gZ3 . (3)

Then the point p0 is at [X : Y : Z] = [0 : 1 : 0]. A meromorphic function with a pole at p0 is
therefore simply a polynomial in the affine coordinates x = X/Z, y = Y/Z. To make further
progress, we must consider x and y as meromorphic functions on E , and ask the order of
their poles at p0. To find this, define affine coordinates s = X/Y, t = Z/Y , so our equation
becomes

t = s3 + fst2 + gt3 .

Since p0 is at t = s = 0, if w is a local coordinate on E satisfying w(p0) = 0, then we must
have t = O(w), s = O(w). But then the right-hand side of the above equation is of order
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w3, implying that t is also of this order. Therefore s has a simple zero at p0, while t has a
zero of order 3. Then, since x = s/t and y = 1/t, we conclude that at p0, x has a pole of
order 2, and y has a pole of order 3. We can therefore represent the n points {Qi} by the
vanishing of a meromorphic function on E as follows

0 = a0 + a2x+ a3y + a4x
2 + a5xy + . . .+

{
anx

n
2 n even,

anx
(n−3)/2y n odd.

(4)

A succint way of summarising the above is to say that the moduli space of flat SU(n)
bundles on E is PH0(E ,OE(n)) ∼= Pn−1.

Aside: The preceding argument is correct, but it may not be obvious that the
equations (3) and (4) have exactly n simultaneous solutions. To see this explicitly,
solve (4) for y as a rational function of x, substitute the solution into (3), and
multiply through by the denominator of the y2 term. It is easy to check that one
always obtains an order n polynomial in x.

2.2 Flat SU(n) bundles on a torus — del Pezzo construction

Friedman, Morgan, and Witten give an alternative description of the above moduli space
in terms of the moduli of a surface M which is a del Pezzo surface of degree one. Such a
surface can be described as P2 blown up in eight points, but for the present purpose, it is
more convenient to describe it as a hypersurface in a weighted projective space:

M ↔WP1,1,2,3[6] .

We take homogeneous coordinates (u, v, x, y) for WP1,1,2,3, corresponding to the weights
(1, 1, 2, 3), so that the equation for M takes the form

pE(v, x, y) + u
(
α5(u, v) + α3(u, v)x+ α2(u, v)y + α1(u, v)x2 + α0xy

)
= 0 (5)

where the functions αk are homogeneous of degree k, and pE is the Weierstrass polynomial
for an elliptic curve E in the space WP1,2,3 defined by u = 0:

pE(v, x, y) = −y2 + x3 + fx v4 + g v6 .

The lattice of divisor classes on M ∼= dP1 which satisfy D ·KM = 0 is isomorphic to the
root lattice of E8. Since E ∼ −KM , each such class defines a degree zero line bundle on E ,
and in this way we obtain a flat E8 bundle on E .

If C is a curve satisfying C · KM = 0, then it must be disjoint from E , and therefore
define a trivial bundle. Note that by adjunction we have

KC ∼ (KM + C)
∣∣
C
∼ C

∣∣
C
,

and therefore in particular, degKC = C · C. Rational curves are therefore (−2)-curves,
and the sub-lattice they generate corresponds to a sub-algebra of e8 which is represented
trivially in the bundle on E . So the singularity in the minimal model of M corresponds to
the sub-algebra of e8 left unbroken by the bundle on E .
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2.3 dP1? What has that to do with K3?

The del Pezzo construction has encoded the heterotic curve and one E8 bundle in the ge-
ometry of a surface; this is the basic idea of the F-theory dual. Here we describe how the
incorporation of the other E8 factor leads to the F-theory K3 surface.

Note from (5) that the point u = v = 0 is actually a base point of the anti-canonical
system of M (the anti-canonical class of dP1 is ample but not very ample). Blow up this
point to a whole P1 parametrised by [u : v]; the projection to this P1 makes the resulting

surface M̃ an elliptic fibration. If we introduce a homogeneous coordinate z on the bundle
OP1(−1) over the exceptional P1, this surface is given explicitly by

−y2 + x3 + fz4v4x+ gz6v6 + z6u
(
α5(u, v) + . . .+ α0(u, v)xy

)
= 0 . (6)

The point u = v = 0 also corresponds to the base point of the system of cubics in P2

which pass through the eight specified points in the definition of M ∼= dP1; in this way we
see that M̃ is in fact a rational elliptic surface.

In the context of F-theory heterotic duality, the fibre over u = 0 is identified with the
heterotic elliptic curve, and the unfolding of the singularity at v = 0 corresponds to the
heterotic bundle.

To obtain the F-theory picture dual to a full E8×E8 model, we need two such surfaces
M̃1 and M̃2; by gluing them together along the common elliptic curve E , we get a degenerate
K3 surface. There is an elementary way to see that this is indeed a K3:

An elliptic K3 has base P1, and generically 24 singular fibres. Let (t0, t1, t2) be homoge-
neous coordinates on P2, and consider the family of quadric curves given by

Cλ : t0t1 − λ2 t22 = 0 , λ ∈ C .

Any λ 6= 0 defines a smooth rational curve, however for λ = 0, this degenerates to two rational
curves intersecting transversely at a point. If we define a family of K3 surfaces elliptically
fibred over this, then at λ = 0 they will degenerate to a pair of elliptic surfaces glued along
the common fibre at t0 = t1 = 0. The anti-canonical class of the curve is the pullback of
OP2(1), so the discriminant of the Weierstrass model is a section of OP2(12). Therefore on
the degenerate fibre there are twelve singular elliptic fibres over each P1 component of the
base, making each component of the degenerate fibre a rational elliptic surface.

3 Duality in lower dimensions

To obtain the duality in lower dimensions, we fibre the above constructions over some man-
ifold. Since we are most interested in compactifications to four dimensions, we will take this
to be a surface S; the results are easily applied to other dimensions.

3.1 The heterotic picture

On the heterotic side, we now have an elliptically-fibred Calabi–Yau threefold Z, with pro-
jection πZ : Z → S; the results of Section 1 tell us that we must take the homogeneous co-
ordinates on the fibre, (X, Y, Z), to transform like sections of OS(−2KS)⊕OS(−3KS)⊕OS,
and therefore the parameters f, g to be sections of OS(−4KS) and OS(−6KS).
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Let us suppose that our heterotic bundle restricts to a semi-stable bundle on the general
fibre of Z. Then on each fibre it has the description given previously, and as we move over
the base S, (3) and (4) together give us an n-fold cover of S, called the spectral cover.

Since x and y now transform non-trivially as we move on S, the spectral cover equation
(4) only makes sense if the parameter am is a section of OS(mKS + η), where η is some
sufficiently ample divisor class on S (which doesn’t depend on m, obviously).

3.1.1 Constructing bundles from a spectral cover

The spectral cover C does not uniquely determine a bundle on Z. Instead, we recover our
bundle V as π∗(L⊗P), where P is the ‘Poincaré line bundle’, π is the projection from C×Z
to Z, and L is some line bundle on C satisfying

c1(L) = −1

2

(
c1(C)− π∗Cc1(S)

)
+ γ ,

where γ is any class on C satisfying πC∗γ = 0. This ensures that the resulting bundle V
satisfies c1(V ) = 0.

The only general construction for the class γ is

γ = λ

(
nσ − π∗C

(
η − n c1(B)

))
, λ ∈ Z .

With this choice of γ, the third Chern class of V is

c3(V ) = 2λη ·B (η − n c1(B)) .

3.1.2 Localisation of cohomology

The massless spectrum of a heterotic model corresponds to cohomology groups of V and
associated bundles. We can use the fibration structure of Z to assist with such calculations;
in particular, we have the Leray spectral sequence:

Ep,q
2 = Hp(S,RqπZ∗V ) −→ Hp+q(Z, V ) ,

where the higher direct image RqπZ∗V is the sheaf associated to the pre-sheaf on S given by
S ⊃ U 7→ Hq(π−1Z (U), V ).

Observe that on a generic fibre Es, V decomposes as a direct sum of non-trivial degree-
zero line bundles, and as such H∗(Es, V

∣∣
ES

) = 0. The cohomology of V will therefore be
localised on the locus over which V contains a trivial piece. This corresponds to one of the
points Qi becoming coincident with p0, which is at infinity in the affine coordinates x, y.
Since the n points Qi are determined by a degree n polynomial of the form . . . + anx

n = 0,
moving one of them to infinity corresponds to an → 0.

So the cohomology of V is localised over the divisor on S given by an = 0, in divisor class
nKS + η.
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3.2 The F-theory picture

On the F-theory side, we begin by considering a family of surfaces fibred over S, each given
by an equation of the form of (5), making up a fourfold Y . Since we must still identify
the heterotic fibre E with the curve given by u = 0 over each point, we learn that (x, y, v)
transform as sections of OS(−2KS),OS(−3KS), and OS respectively. The transformation
properties of u, on the other hand, are not fixed, but correlated with the transformation
properties of the coefficients in the functions αk. We will demonstrate this with an example:

The case of unbroken SU(5)

Let u ∼ OS(η̂) for some divisor class η̂. Suppose we want to generate an A4

singularity at v = 0. Then by Tate’s algorithm, we must take the equation for Y
to be (setting z → 1, which we can do in the relevant patch)

pE(v, x, y) + u(a0v
5 + a2v

3x+ a3v
2y + a4vx

2 + a5xy) = 0 .

In order for this to be well-defined, since the terms in pE are sections of OS(−6KS),
we must take the am to be sections of the following bundles:

am ∼ OS
(
(m− 6)KS − η̂

)
.

Therefore if we identify η̂ ∼ −6KS − η, where η is the divisor class entering the
spectral cover data on the heterotic side, we get an exact match between the two
moduli spaces.

3.2.1 Moving away from the stable degeneration

Each rational elliptic surface fibre has a P1 base parametrised by [u : v], and we have seen
that v/u ∼ 6KS + η. This is the normal coordinate to the divisor on which the gauge group
lives. What happens when we deform away from the stable degeneration limit?

Consider again the family of rational curves given by

Cλ : t0t1 − λ2 t22 = 0 , λ ∈ C .

For λ 6= 0, the explicit isomorphism with P1 is (t0, t1, t2) = (λs20, λs
2
1, s0s1). For any λ, we

therefore have two distinguished divisors:

D0 : t0 = t2 = 0 ←→ s0 = 0 ,

D1 : t1 = t2 = 0 ←→ s1 = 0 ,

with normal coordinates s0/s1 = λt2/t1 and s1/s0 = λt2/t0 respectively.
The singular curve C0 has two components, each isomorphic to P1. The first is parametrised

by [t1 : t2] and contains the divisor D0 at t2 = 0, while the second is parametrised by [t0 : t2]
and contains the divisor D1 at t2 = 0. The normal coordinate to D0 is therefore t2/t1, and
that to D1 is t2/t0.

Moving away from the stable degeneration point corresponds to turning on a non-zero
λ, and the heterotic manifold at t0 = t1 = 0 is lost, leaving only the two divisors D0 and
D1, over which the two gauge groups live. We saw above that this does not change the
local topology near each divisor, which is as one would expect. However, we now have an
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identification between the two normal bundles: D0
∼= D1, but the normal bundles are related

by ND1|B
∼= N−1D0|B, as the two divisors now intersect each fibre at opposite poles of a common

P1. In terms of the classes η, we therefore have

6KS + η1 = −6KS − η0
⇒ η0 + η1 = −12KS .

Example:

We can translate the analysis of Morrison and Vafa into this language. The heterotic
theory is defined on an elliptic K3, so the base B on the F-theory side is a P1 bundle
over P1, i.e., a Hirzebruch surface. These are distinguished by a parameter n:

B = P
(
OP1⊕OPn(n)

)
.

The two divisors D0 and D1 live at the poles of the fibration, and therefore have
normal bundles OP1(−n) and OP1(n) respectively. Since KP1 = −2, this lets us
identify the classes η0 = 12−n and η1 = 12+n. For any n, there is therefore ample
freedom in the bundle construction to completely break the second E8. However
for large enough n, we will leave some subgroup of the first E8 unbroken.
For example, if n = 5, then mKP1 +η0 = 7−2m, and for m > 3 this has no sections.
Therefore we can turn on at most an SU(3) bundle, breaking E8 to E6.
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